Connect with us

Tech Features

5 KEY TECHNOLOGY TRENDS AFFECTING THE SECURITY SECTOR IN 2026

Published

on

Three individuals standing indoors in front of large windows, dressed in business casual attire including a grey suit, an orange button-up shirt, and a dark jacket over a patterned shirt

By Johan Paulsson, Chief Technology Officer at Axis Communications; Matt Thulin, Director of AI & Analytics Solutions at Axis Communications; and Thomas Ekdahl, Engineering Manager – Technologies at Axis Communications

It came as a surprise that this is the 10th time that we’ve looked at the technology trends that we think will affect the security sector in the coming year. It feels like only yesterday that we sat down to write the first – a reminder of how quickly time passes, and how fast technological progress continues to move.

Something that’s also become clear is that a completely new set of trends doesn’t appear year-on-year. Rather, we see an evolution of trends and technological developments, and that’s very much the case as we look towards 2026. Technological innovations regularly arrive, which impact our sector. Artificial intelligence, advancements in imaging, greater processing capabilities within devices, enhanced communications technologies…these and more have impacted our industry.

Even technologies which still seem a distance away, such as quantum computing, may have some potential implications in the near-term in preparing for the future. While we focus here on tech trends, it’s worth highlighting a shift that we’ve seen in recent years: the increasing involvement and influence of the IT department over decisions related to security and safety technology. The physical security and IT departments now work in close collaboration, with IT heavily involved in physical security purchasing decisions.

That influence, we feel, is central to the first of our trends for 2026…

1. “Ecosystem-first” becomes an important part of decision making

At a fundamental level, the greater influence of the IT department is changing the perspective regarding security technology purchasing decisions. We call this an “ecosystem-first” approach, and it influences almost every subsequent decision. Today, however, we start to see a trend that the first decision is increasingly defined by the solution ecosystem to which the customer wants to commit. In many ways, it’s analogous to how IT has always worked: decide on an operating system, and then select compatible hardware and software.

The ecosystem-first approach makes a lot of sense. With today’s solutions including a greater variety of devices, sensors, and analytics than ever before, seamless integration, configuration, management, and scalability is essential. In addition, product lifecycle management, including, critically, ongoing software support, becomes more achievable within a single ecosystem.

Committing to a single ecosystem – one offering breadth and depth in hardware and software from both the principal vendor alongside a vibrant ecosystem of partners – is the primary decision.

2. The ongoing evolution of hybrid architectures

A hybrid architecture as the preferred choice isn’t new. In fact, it’s something we’ve highlighted in previous technology trends posts. But it continues to evolve. Sometimes evolution can seem quite subtle. In reality, we’re seeing some fundamental shifts.

We’ve always described hybrid as a mix of edge computing within cameras, cloud resources, and on-premise servers. While that’s still the same today, what’s changing is the balance of resources, as capabilities are enhanced and new use cases emerge. Edge and cloud are becoming much more significant, with the need for on-premise server computing resources reduced.

This is largely a result of enhanced computing power and capabilities within both cameras and the cloud. More powerful edge AI-enabled surveillance cameras can, put simply, handle more than ever before. Improved image quality, the ability to more accurately analyze scenes and create valuable metadata have seen cameras take on tasks previously handled on the server.

Similarly, with such a wealth of data being created, cloud-based resources have the analytical power required to surface business intelligence and insights to enhance operational effectiveness.

There can still be legitimate reasons to retain some on-premise resources, such as network video recorders, but the true value is increasingly coming from edge devices and cloud resources. Ultimately, it’s a trend that meets both the IT department’s drive for efficiency, the security team’s desire for solution quality and effectiveness, and the data integrity and security needs of both.

But, even if hybrid architectures are a trend, we must not forget that a vast majority of all solutions are still very much on-prem solutions, and this will be the case for a long time.

3. The increased importance of edge computing

In many sectors, like the automotive industry, the need and potential for edge computing has only been recognized relatively recently. As regular readers will know, however, the value of increased computing resources within devices at the edge of the network has been a feature of our technology trends predictions for several years. Enhanced capabilities mark the beginning of a new era of edge.

In many ways, the increased importance of edge computing is directly related to the evolution of hybrid architectures described in the previous trend. When hybrid solutions have included edge, cloud, and server technologies, the full potential of edge AI hasn’t always been fully realized. With on-premise servers able to support some tasks, there has been less motivation to move these to the edge.

This is already changing and will accelerate over the coming year. This is in part due to the enhanced AI available to the edge, within devices themselves. The discussion and decisions about where to deploy AI across surveillance solutions – using the strengths of edge AI in devices and the power of cloud-based analytics – has brought focus to the capabilities of cameras and the increasing variety of edge AI-enabled sensors. These bring benefits in both effectiveness and efficiency.

Edge processing generates both business data — actionable insights derived directly from the scene — and metadata, which describes the objects and scenes within it.  This information has become the basis for efficient scaling of system functionality, such as smart video searches, and for generating system wide insights. Edge processing enables a much smoother scaling of system compute performance, as the system performance grows with each added edge device.

The arguments against moving more to the edge, such as cybersecurity challenges, have diminished. With the strong cybersecurity capabilities of edge devices, such as secure boot and signed OS, they now have become a strong part of the overall system security solution.

4. Mobile surveillance on the rise

Mobile surveillance solutions, like mobile trailers, aren’t a trend in themselves. For numerous reasons – commercial and technological – mobile surveillance has already seen significant growth and is set to explode over the next year.

From a technological perspective, improved connectivity has helped unlock the ability to employ more advanced, higher-quality surveillance cameras in mobile solutions. Remote access and edge AI has further enhanced the capabilities of mobile surveillance solutions. This immediately makes them an attractive option in a greater variety of situations, from public safety to construction sites to festivals and sporting events.

Power management within surveillance cameras has also advanced, resulting in lower power utilization without a compromise in quality. This is particularly important where mobile surveillance solutions are making use of battery power and renewable energy. A mobile surveillance solution can also be more straightforward to approve than a permanent installation.

Ultimately, these factors mean that security and safety can be ensured in places where it is difficult or undesirable to place physical security personnel.

5. Technology autonomy: Easier said than done!

Less a new trend, and more a reflection on one of our trends from last year where we highlighted how companies across many sectors were looking to gain more control over key technologies essential to their products. Automotive companies looking to design their own semiconductors to mitigate against supply chain disruption was an example.

As many of those organizations are finding, however, extending an organization’s focus from its traditional business (e.g. making cars) to a fundamentally different and potentially highly complex area (e.g. designing semiconductors) is easier said than done. Attempts also highlight how interconnected global supply chains are, and that true autonomy is impossible to achieve.

As we have done for many years here at Axis, focus for technological autonomy should be on the areas of a business that make a fundamental difference to the offering. Designing our own system-on-chip (SoC), ARTPEC, which Axis started doing more than 25 years ago, has given us ultimate control over our product functionality.

An example of the benefit of this has been our ability to be the first surveillance equipment vendor to provide AV1 video encoding to our customers and partners, in addition to H.264 and H.265. It also allows us to prepare for future technologies that will bring opportunities and risks, even those that still seem many years in the future.

While we always enjoy putting together our thoughts on the trends that will define the industry over the coming year, our perspective stretches much further into the future. This is what gives us the ability to plan for and develop the innovations that continue to meet the evolving needs of customers, and opportunities to improve safety, security, operational efficiency and business intelligence.

Innovation doesn’t happen in isolation, however. The best ideas emerge through collaboration, by listening to our customers and understanding their challenges, by maintaining close relationships with our partners, and by exploring solutions together. These partnerships are what will continue to drive progress as we move into 2026 and beyond, whichever way the technological winds may blow.

Continue Reading
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Tech Features

HOW WOMEN SCIENTISTS CAN ACCELERATE NATIONAL INNOVATION GOALS

Published

on

Dr Heba El-Shimy, Assistant Professor (Data and AI), Mathematical and Computer Sciences, Heriot-Watt University Dubai

Healthy societies, institutions, or teams operate best when comprising a healthy balance between males and females. A landmark study by Boston Consulting Group (BCG) with the Technical University of Munich uncovered that companies with above-average gender diversity generated around 45% of their revenues from innovative products, compared to only 26% as innovative revenues for companies with below-average gender diversity. These findings are echoed in the scientific field. A 2025 study by Nature analyzing 3.7 million US patents revealed that inventing teams with higher participation of women are associated with increased novelty in patents. Research by the Massachusetts Institute of Technology confirms that teams with more women exhibit significantly higher collective intelligence and are more effective at solving difficult problems. These studies tell one clear story: that participation of women in innovative and scientific fields is not only desirable — it is a strategic national asset.

UAE Women In STEM

The UAE holds one of the world’s most striking gender profiles in STEM education. According to UNESCO data, 61% of graduates in STEM fields are Emirati women, surpassing the Arab world average of 57% and nearly doubling the global average of 35%. At government universities, 56% of graduates are women, and they represent over 80% of graduates in natural sciences, mathematics, and statistics.

These numbers have translated into accomplishments that have captured global attention. The Emirates Mars Mission — the Hope Probe — was developed by a team of scientists that was 80% women, selected based on merit. Noora Al Matrooshi became the first Arab woman to complete NASA astronaut training in 2024. The Chair of the UAE Space Agency and the mission’s Deputy Project Manager is a woman: H.E. Sarah Al Amiri. At Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), female enrolment reached 28% within five years and continues to grow. Women’s talents are being recognised — this is not a mere future ambition, but a present reality.

Scientific Research As An Engine For National Strategy

The ‘We the UAE 2031’ vision sets ambitious goals: doubling GDP to AED 3 trillion, generating AED 800 billion in non-oil exports, and positioning the country as a global hub for innovation, artificial intelligence, and entrepreneurship. The UAE’s rise to the 30th place in WIPO Global Innovation Index 2025 signals a steady pace towards achieving the UAE 2031 vision. Sustaining this ascent requires continued investment into human capital to produce research output, intellectual property, and commercial innovation at a pace matching the ambition. This is precisely where women scientists become indispensable.

Women scientists are already major contributors to the seven priority sectors identified in the UAE National Innovation Strategy: renewable energy, transport, education, health, technology, water, and space. UAE women scientists are research-active in climate science, sustainable materials, clean energy systems, AI-driven diagnostics in healthcare, and environmental monitoring — all crucial sciences that the national development commitments depend on.

Knowledge economies are built on the ability to generate, apply, and commercialize research locally — reducing the dependence on imported technologies and creating self-sustaining innovation ecosystems. When a researcher at UAEU develops patented computational methods for drug design, as Dr. Alya Arabi recently did with four patents spanning AI-driven pharmaceutical development and medical devices, that is intellectual property created on UAE soil, addressing healthcare challenges that would otherwise require imported solutions. When women scientists at Masdar City and Khalifa University advance research in solar energy systems, carbon captured materials, or sustainable desalination, they are producing foundational science that the UAE’s Net-Zero 2050 Strategy depends upon.

Masdar’s WiSER (Women in Sustainability, Environment and Renewable Energy) programme has graduated professional young women from over 30 nationalities, closing the gap in the global sustainability workforce. In healthcare, women scientists are active in the areas where AI, genomics, and precision medicine converge. The Emirati Genome Programme, M42’s Omics Center of Excellence, and the Abu Dhabi Stem Cells Center all represent domains where locally produced research can reduce the country’s reliance on imported diagnostics and therapeutics.

From these examples, it is clear that women scientists’ and researchers’ contributions are a central pillar of the national R&D ecosystem.

A Regional And Global Perspective

The UAE’s experience is instructive for the wider region. Across the Arab world, up to 57% of STEM graduates are women, yet the MENA region maintains one of the lowest female workforce participation rates globally at 19%. Saudi Arabia’s Vision 2030 has made notable progress, with women’s workforce participation reaching 36.2% and women now comprising 40.9% of the Kingdom’s researchers. The challenge across the GCC and MENA is consistent: converting educational attainment into sustained professional participation and research output. Globally, only one in three researchers is a woman, and parity in engineering, mathematics, and computer science is not projected until 2052. UNESCO’s 2026 International Day of Women and Girls in Science theme — “From Vision to Impact” — captures this urgency well.

The Way Forward: From Vision To Impact

As an academic working at the intersection of artificial intelligence and healthcare research in Dubai, I witness this potential daily — in students who arrive with rigour and ambition, in researchers producing work that stands alongside the best globally, and in a national ecosystem that increasingly treats women’s scientific participation as a strategic priority rather than a social courtesy. But policies alone do not produce innovation. What produces innovation is funding, access to facilities, clear pathways from research to commercialisation, and the recognition that a woman scientist publishing a patent in the UAE is building national capability in exactly the same way as the infrastructure projects that make headlines.

Sustained commitment is key — from governments, institutions, and the private sector — to ensure that every woman scientist in this region has the funding, the platforms, and the pathways to convert her research into national impact. When women scientists thrive, nations innovate faster. The UAE understands this. Now it must ensure the rest of the ecosystem does too.

Continue Reading

Tech Features

WOMEN IN AI AND DATA SCIENCE: WHO IS BUILDING THE ALGORITHMS THAT SHAPE OUR FUTURE?

Published

on

Dr Maheen Hasib, Global Programme Director for BSc Data Sciences, School of Mathematical and Computer Sciences, Heriot-Watt University Dubai

Artificial intelligence (AI) and data science are no longer distant or experimental ideas. They quietly sit behind many of the decisions that shape our everyday lives: how patients are diagnosed, how job applications are filtered, how loans are approved etc. These systems increasingly influence who gets opportunities and who does not. That reality makes one question impossible to ignore: who is building the algorithms that shape our future?

As a Programme Director for the Data Sciences programme at Heriot-Watt University, this question is not just academic for me, it is deeply personal. Every year, I meet capable, curious, and motivated young women who are genuinely interested in data science. Yet many hesitate. Not because they lack ability, but because they are unsure whether they truly belong in the field. Too often, they do not see people (like themselves) reflected in AI research, technical teams, or leadership roles. And that absence matters.

When bias in AI feels uncomfortably familiar

AI systems are often described as objective or neutral, yet they are trained in data shaped by human history, something that is far from neutral. When training data reflects existing gender imbalances, AI systems can replicate and even magnify those patterns. This has led to technologies that perform less accurately for women, fail to capture women’s health needs, or disadvantage women in recruitment and evaluation processes.

For many women, these outcomes feel uncomfortably familiar. They echo everyday experiences of being overlooked, misunderstood, or underrepresented. In most cases, this is not the result of deliberate exclusion. It is the consequence of design choices made without diverse perspectives at the table.

Why representation goes beyond numbers

Representation in AI and data science is often discussed in terms of statistics or diversity targets. But at its core, representation is about perspective. When women are involved in developing AI systems, they help shape how problems are defined, what data are considered relevant, and which risks are taken seriously.

From an academic perspective, diverse teams produce more robust research and better-tested models. From a human perspective, they help ensure that AI systems work for the full range of people they are meant to serve. Inclusion improves both technical quality and social impact, it strengthens the science and the society it serves.

Women and the future of ethical AI

Many women working in AI are already at the forefront of discussions around fairness, transparency, explainability, and responsible data use. These are not peripheral concerns; they are central to building trustworthy AI. Ethical AI requires asking difficult questions: Who might be harmed when a system fails? Whose data is missing? Who is affected by design decisions that seem minor on the surface?

By advocating for human-centered approaches, women in AI are helping shift the field beyond purely performance-driven metrics toward systems that balance innovation with responsibility.

Education, encouragement, and visibility matter

At Heriot-Watt University Dubai, we make a deliberate effort to encourage women to pursue data science, not just as a degree, but as a long-term career. This means creating supportive learning environments, highlighting female role models, and openly discussing the wide range of paths that data science can lead to. Students need to see that success in AI does not follow a single template.

Equally important are spaces where women can connect, share experiences, and feel supported. As an ambassador for Women in Data Science, I have seen how such events play a vital role. They create visibility, build confidence, and remind women that they are not alone. We need more of these initiatives, not as one-off celebrations, but as sustained platforms for mentorship, networking, and growth.

Encouraging women in AI is not about lowering standards or meeting quotas. It is about recognizing that inclusive participation leads to better research, more ethical technologies, and systems that genuinely reflect the societies they shape.

Conclusion

As AI and data science continue to influence our world, we must ask not only what these systems do, but who designs them. Supporting women to study data science, pursue AI careers, and step into leadership roles is essential to building technologies that are fair, responsible, and trustworthy. Through education, visibility, and initiatives, we can help ensure that the future of AI is shaped by many voices.

The future of AI should be one where women do not simply use technology but actively shape it.

Continue Reading

Tech Features

INSIDE THE TECHNOLOGY THAT MAKES HUAWEI FREECLIP THE BEST OPEN-EAR EARBUDS!

Published

on

White HUAWEI FreeClip open‑ear earbuds inside an open charging case on a table, with a smartphone, Christmas tree, lights, and wrapped gift boxes in the background.

It has been two years since the debut of the original HUAWEI FreeClip, Huawei’s first-ever open earbuds that took the market by storm. Its massive popularity proved that the world was ready for a new kind of listening experience. The new HUAWEI FreeClip 2 tackles the hard challenges of open-ear acoustics physics head-on, combining a powerful dual-diaphragm driver with computational audio. It delivers depth and clarity, which was once thought impossible with an open-ear design.

Solving the acoustic limitations of open-ear audio alone would have been sufficient to make the HUAWEI FreeClip 2 our pick for best open-ear audio. But it is way more than that.

Comfortable C-Bridge design

The HUAWEI FreeClip 2 earbuds weigh only 5.1 g per bud, a 9% reduction from the previous generation. This lightweight architecture ensures an effortless experience, perfect for long calls, workouts, and commutes, allowing you to wear them all day without fatigue. The comfort bean is 11% smaller than the previous model, yet the design provides a secure fit that prevents the earbuds from falling out, even during intense activity.

Constructed from a new skin-friendly liquid silicone and a shape-memory alloy, the C-bridge is 25% softer and significantly more flexible than its predecessor. Finished with a fine, textured surface, it ensures a comfortable, irritation-free wearing even after extended use.

Adaptive open-ear listening

The acoustic system has been significantly upgraded, featuring a dual-diaphragm driver and a multi-mic call noise cancellation system. This setup not only delivers powerful sound but also maximises space efficiency. That’s why, despite their small size, these earbuds can deliver substantial acoustic performance.

The Open-fit design of the earbuds demands high computing power to maintain sound quality and call clarity. The HUAWEI FreeClip 2 offers ten times the processing power of the previous generation, serving as Huawei’s first earbuds to feature an NPU AI processor for a truly adaptive experience. The new dual-diaphragm driver includes a single dynamic driver with two diaphragms, effectively doubling the sound output within a compact space to provide a significant boost in volume and bass response.

Furthermore, the earbuds dynamically detect surrounding noise and adjust volume and voice levels in real-time. If the environment is too noisy, the system uses adaptive voice enhancement to specifically boost human frequencies, ensuring you never miss a word of a podcast or audiobook. When you return to a quiet environment, the earbuds automatically settle back to a comfortable volume level.

Crystal clear calls

To ensure call quality in chaotic environments, the HUAWEI FreeClip 2 utilises a three-mic system combined with multi-channel DNN (Deep Neural Network) noise cancellation algorithms. This system intelligently identifies and filters out ambient noise. Thanks to the NPU AI processor, the earbuds automatically enhance voice clarity, ensuring your conversations remain crisp regardless of your surroundings.

Battery life and charging

With the charging case, the HUAWEI FreeClip 2 offers a total battery life of 38 hours, allowing users to enjoy music throughout a full week of commuting on a single charge. On their own, the earbuds last for 9 hours—enough for a full workday of uninterrupted calls. For those in a rush, just 10 minutes of fast charging in the case provides up to 3 hours of playback. For added convenience, they support wireless charging and are compatible with watch chargers.

Rated IP57, the earbuds are resistant to sweat and water. They can easily withstand intense workouts or even a downpour.

Connectivity

The earbuds support dual connections and seamless auto-switching across iOS, Android, and Windows. When connected to EMUI devices, you can even switch audio between more than two devices. Additionally, when connected to a PC, the earbuds allow you to answer an incoming call without disconnecting from or interrupting your conference setup.

It is, quite simply, a pair of earphones reliable enough for the gym, the office, and the commute.

Continue Reading

Trending

Copyright © 2023 | The Integrator